Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr(VI)-contaminated wastewater.

نویسندگان

  • Gui-Qiu Chen
  • Wen-Juan Zhang
  • Guang-Ming Zeng
  • Jin-Hui Huang
  • Liang Wang
  • Guo-Li Shen
چکیده

To improve the removal efficiency of heavy metals from wastewater, the surface of a fungal biomass was modified to obtain a high-capacity biosorbent for Cr(VI) in wastewater. The effects of pH, initial concentration, and sorption time on Cr(VI) removal by polyethylenimine (PEI)-modified Phanerochaete chrysosporium were investigated. The biomass adsorption capacity was significantly dependent on the pH of the solution, and the optimum pH was approximately 3.0. The maximum removal for Cr(VI) was 344.8 mg/g as determined with the Langmuir adsorption isotherm. Pseudo-first-order Lagergren model is better than pseudo-second-order Lagergren model when simulating the kinetic experiment results. Furthermore, an amount of Cr(VI) was reduced to Cr(III), indicating that some reactions occurred on the surface of the biomass leading to the reduction of Cr(VI). The point of zero potential for the modified biomass increased from an initial pH of 3.0 to a much higher value of 10.8, indicating that the PEI-modified biomass is better than the pristine biomass for adsorption of anionic adsorbates. Results showed that the PEI-modified biosorbent presented high efficiency in treating Cr(VI)-contaminated wastewater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosorption of Lead (II) and Zinc (II) ions by pre-treated biomass of phanerochaete chrysosporium

The biosorption of heavy metals can be an effective process for the removal of such metal ions from aqueous solutions. In this study, the adsorption properties of nonliving biomass of phanerochaete chrysosporium for Pb (II) and Zn (II) were investigated by the use of batch adsorption techniques. The effects of initial metal ion concentration, initial pH, biosorbent concentration, stirring speed...

متن کامل

Removal of Cd(II), Cu(II) and Zn(II) from aqueous solutions by live Phanerochaete chrysosporium.

Living Phanerochaete chrysosporium mycelia were used to remove heavy metals of Cd(II), Cu(II) and Zn(II) in auqeous solution. The uptake of heavy metal by the mycelia was dependent on the environmental conditions. The optimum biosorption conditions of Cd(II), Cu(II), and Zn(II) were pH 5.5-6.5 at 37 degrees C, and 6 h. Under these conditions, the fungal biosorbent removed Cd(II), Cu(II), and Zn...

متن کامل

بررسی کارایی جذب پنتاکلروفنل با استفاده از بیومس قارچ‌ فانروکیت کرایزوسپوریوم از محلول‌های آبی

Background and purpose: Pentachlorophenol (PCP) is an organic compound categorized as priority pollutants with harmful effects on humans, animals and plants. Therefore, the removal of PCP from water and wastewater is of great importance. This study aimed at assessing the efficiency of Phanerochaete Chrysosporium fungus biomass in PCP absorption. Material and methods: In this experimental study ...

متن کامل

ADSORPTION OF CONGO RED DYE ON HAZELNUT SHELLS AND DEGRADATION WITH Phanerochaete chrysosporium

The present work concerns the experimental evaluation of hazelnut shells as a low cost natural biosorbent. Adsorption of the direct azo dye Congo Red was performed within a concentrations range of 50-5000 mg/L. Hazelnut shells were employed as organic support for Phanerochaete chrysosporium cultures to study the best cultural medium composition for the MnP production. The capability of Phaneroc...

متن کامل

Biological Removal of Dibenzothiophene from Soil and Changes to soil Sulfate by White-Rot Fungus Phanerochaete chrysosporium

This study investigated biodegradation of dibenzothiophene (DBT) in marsh soil spiked bywhite-rot fungus Phanerochaete chrysosporium. Soil samples were spiked with 100 ppm DBTand incubated at 30°C in a dark chamber for 30 days. Samples were evaluated for pH, Mnperoxidaseactivity, sulfate ion concentration and growth during the tests. Results showedmaximum levels of pH, Mn-peroxidase and sulfate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 186 2-3  شماره 

صفحات  -

تاریخ انتشار 2011